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THE ~O~STRtiCTIO~ OF CO~lPOSIT~ ~~ODELS FOR THE ~~E~HA~ICS OF A SUPPORT OF 
A SET OF RIGID BODIES* 

V.A. KONOPLEV 

Previous results fl, 21, bas;ld on /3, 4/, were used to devise universal 

and economic algorithms for constructing composite matrix models for the 

mechanics (kinematics, dynamics and control) of the support of a set of 

rigid bodies withatree structure /5-lo/. Two types of model were con- 

sidered, which either take account of, or ignore, the effect of support 

motion on the relative motion of the supported bodies. 

The models function well because, at the first stage of their 

formation, dynamic sets (equations of dynamics, written in a special form 

in quasivelocities) of individual sections of the system (i.e., rigid 

bodies of the same type) are constructed. By combining these equations 

in matrix form, a single vector equation of motion of the system is 

obtained, when the system is under the action of external forces, control 

farces, friction forces, and reactions of the hinges. Multiplication of 

the equation by the structural matrix determined by the graph and 

instantaneous configuration of the system of bodies, leads to an equation 
of the support motion that takes account of its effect on the relative 

motion of the supported bodies. 

The matrix coefficients of these equations prove to be obtainable by 

a certain rule (given by the graph of the system) from the similar matrix 

coefficients of the equations of motion of the isolated bodies. This 

makes the models suitable for computer construction in symbolic form /11, 

12/, and/or, independently, in numerical form according to a simple rule 

which is easily formalized and therefore readily adapted for computer use. 

These models embrace any class of kinematic pairs of supported systems, 

the presence on the bodies of dynamically unbalanced and asymmetric 

rotating flywheels, and the presence of an external delay medium (in the 

context of potential flow). 

1. All our working is based on the folIowing concepts /l-4/. 
10. The numerical set of vector space of screws H and the group of its motions 

L(H.~)={L,":L,"=T,B[c~~~;s,~E~~ 

L; = L:,,Lif:; x . . . x L:-', 
(1.1) 

(Ii,")-' = L,' 

Bere and henceforth, the notation is the same as that introduced in f2, 3/. 
The group f, (H.6) is convenient for computerizing the matrix formalization of repeated 

operations of the transformation of screw PlGcker coordinates when changing to a new system 

of coordinates: if X,' and Xt' are the same screw X+Z H in E, and E,, where .L,': E,-+ Et, 
then X," = LtXt, X,' = L,'X,S. 

20. The kinematic equation in the group L (HA) 

(1.2) 

Eq.(1.2) is convenient for computerizing the matrix formalization of differentiation of 

motions L,SCZ L(H.6). 
30. The recurrent kinematic equations 

18 
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(1.3) 

4O. The tree-type graph of the system, whose orientation is determined by the vectors of 
the configuration El, in &A-1, II _( 1 (p, 1 are the column numbers, and k is the number of 
levels of the graphs, for a support-body 1 = 1, k = 1) 

lJ# = 11 PI elk j/T (1.4) 

where szx = 11 s,", s,fk, .sQrk jfr is the vector of parallel translation E,, in Ev.k-1 and in the 

basis [eck-11; 6'" = 11 6afK, es"", 6ath /I= is the vector of angles of orientation of '[e'"] in [eaJ+r]. 

In the case of constructive (constant) translations and rotations, we shall use, instead 
of the symbols s and 6 the symbols p and cp respectively. The variable coordinates of the 
vector (1.4) form the vector of generalized coordinates qtk of the kinematic pair (12. k - 1; 
lk), so that 

rfk' zz jjf'"i\ @. (1.5) 
where II$'" 11 = If . . . 1 fik I . . . \I is a (6 x dim 4”) matrix, whose columns are the six-dimensional 
unit ;,ctors fpik E R, of the axes of mobility with one in the p-position, 6 = 1, 2. . . ., 8. 

. The structural matrix of the system is 

s, = \I fl]TllITL (1.6) 

I( fil = diag (11 flk ]I), M = diag f&f&$-‘) 

(1.7) 

Cl); w.k-l = Cl (eqLk) ca (0;‘) c3 (eetk) (1.8) 

ski u.k-l = 11 c3T (0:) cq* (0:“) e:, 1 c3T (02) e:‘j efi”’ II (1.9) 
ci (82) = E + (ef”) sin BE + <e:k>2 (1 - Cos 8F) (Lao) 

Here, &ir-' is the matrix of rotation [e'.k-']+ [@I; a~~'-~ is the matrix of the Euler 

kinematic equations, c&"-';'~ = &"-'13'~'; ci ($c") is a (3 x 3) matrix of elementary rotation 
with unit vector eifk by an angle 6,;i = 1,2,3; a = 4,5,G; L is a (6m x 6m) upper-triangle 
block matrix with (6 x 6) blocks of the type 

.&*' E L (N. 6), if (Ek) C% (St), 

0, if (W @ (4, 

(l.ii) 

at the intersection of the (.+)-matrix (6 x 6m) rows and the (Ik)-matrix (6m X 6) columns; 
m is the number of rigid bodies in the system: (.)+ is the set of attainability of the graph 
element (.). 

The blocks of matrix S,M are either zero numerical (1 x 6) rows, or columns of the same 
dimensionality of the type 

Slh- St-a =@ TM&$-& '~;f (Liz) 

Any screw Xlh." into 
E *om .Eat 

is successively transformed by the action of this row from Elk 

stt into the system of generalized coordinates b'# 
by the unit vector fa”*T E R, , 

and then, by multiplication 
is projected onto the U-direction of this coordinate system, 

a = 1, 2, . * *, 6. 

2. The dynamic aggregate of a single rigid body is an element of the system which moves 
in an inertial fluid and supports dynamically unbalanced (<rCz">'k+O in the van Misesmatrix 

6,'") and asymmetric (Oll'k f ez:R in the matrix 8,,'") flywheels, and can be written as /2/ 
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In Eqs.(2.1), Larke L(H. 6) is the matrix of passage from Eo to the coordinate system 
E,, which is connected in a fixed way with the s-flywheel, mounted on the (Zk)-section in 
the power module that controls the variation of the generalized coordinate gorL of the (Y, 
k + 1) -section (v > 1), @,I', eb, lpdif is the von Wises matrix, the unit vector of the axis of 
rotation and the angular velocity of rotation of the flywheel; rnlk is the number of flywheels 
mounted on the (Ik)-body for controlling the variation of the coordinate qsv.h-+i; RIklk (p. k _ 

1; lk); Vlkrk (p. k - 1; lk), Nlk” (p. k - 1; lk) are the dynamic reaction screws that control the 
stresses and the friction stresses transmitted from the (p. k - I)-section to the (lk)-section 
in EIz. 

By combining Eqs.(2.1) (for all the system indices (fi) we obtain the matrix equation 
of the system motion under the action of the external forces, the reaction forces at the 
hinges, and the control and friction stresses 

The equation 
its motion on the 
(2.2) on the left 

( ud’, %*’ are the 

Sn,AV* + S&V = SMT + u + n 
SJ,,R=O, SMU=u, SMN=n (2.3) 
u = I[. . ., ua”. . . . IIT, II = 11. , ., n,“, . . . I(* 

control and friction stresses transmitted to the (&)-body with respect to 
the a-coordinate). 

Using Eqs.(l.4), we obtain for the kinematic aggregate of the system of bodies 
V = s&J., q' = 11 . ., I$‘-, . . . (1-f (2.4) 

AV* + BY = F (2.2) 

A = diag (Alkrk), B = diag (Blkn) 

F = 11 . . ., F;:, . . ., l}==T+R+U+N 

v = 11. . ., vff’“, . . . If 

T = ]I. . ., Tftf, . . ., {IT, R = 11 . . ., fff;, . . . IIT 

U= 11 . . ., Vi:, . . .;[I’, N = 11. . ., N!:, . . . IIT 

of motion of the support, in quasivelocities, allowing for the influence of 
relative motion of the supported bodies, is obtained by multiplying Eqs. 
by the structural matrix &of (1.6): 

the differentiation of which gives 

v* =I: S&q” + sT;q 

&T = (P-M + PM’) II fll 

where the asterisk denotes the derivative in the connected 
The matrices L' and M' are obtained from matrices L 

(2.5) 

coordinate systems. 
and M by replacing the blocks LIR* 

0 
l&k-l 

f&k I 
&R-l’ 

= 11 ((ea)T cg= (eiR) ckT (#IT) ef’ + 
ckT (ep) CUT (er) <&T eihj eik 1 

1 <ep)T cQ (0;) eye:” IO II 

where 

(2.6) 

when obtaining ~qs.(2.6) we use Poisson's equation .e,p_l' =I CpM <o,P-I>"= <o,p-'>~Cpp-' , 
under the condition that esp' is a (3 X 3) matrix of an elementary rotation (1.10). 

Substitution of (2.4) and (2.5) into (2.3) leads to the equation of the support motion 
when the influence of its motipn on the relative motion of the supported bodies of generalized 
coordinates is taken into account 
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A(q)q”4B(q,q’)q’=S~T3_u+n 

A (q) = SI;;ASM~ 
B (q, q*) = S,,BS,T + SMASM*’ 

(2.7) 

(2.6) 

By (2.7) and (2.8), the matrices A(q) and B (s, 9') of any system of bodies with a 
structural tree can be obtained from the similar matrices &'l', BlkfC that form the system 
with the aid of the structural matrix SM and its derivative Sal'. 

If the supported systems are all formed from kinematic pairs of the fifth class, then 

the matrix coefficients in (2.7) take the form (because flif@"- 11 jr" 11 -_= ~~~~~.lj-l~~k S fa’k, 
MtkP.k-I-fS** zs 0, Zk # 11) 

A (q) = SASTM,,, S = I} fl/TL 

B (q, q’) = SBSTM,, + SdSaf=’ (2.9) 
SmT‘ = ST’M,, + PM,,’ 

Mn = II f llTJf II f IIt ML = II f IFM II f II 

The block diagonal matrices Ml,, Ml; have the (6 X 6) matrices Ml,‘@ and Mrrro as 
the upper left-hand blocks. At the remaining places of the principal diagonals there are 
scalar ones and zeros. 

Relations (2.8) and (2.9) give the matrices A(q) and B (q, q’) in Eqs.(2.7) as the 
products of block matrices. In many problems these matrices are better given by algorithms 
for obtaining their elements at the intersection of the (st - a)-rows and the (lk - B)- 
columns 

For systems 
class, we obtain 

A$$ = 2: 
?E@f, IO+ 

S~-aA,Ps~-~’ T (2.10) 

B:f$ = PE<z Ih’,+ (~“pf-~A,“c$~ + s”d”KF”s6”-“* T, (2.11) 

$-= = jsx’. T&.t-l,r;t, $-B = L;, T,,,ffL;"-l'$k 

K;'P = BP" + App@;'=' T, (st, Ek), = (st), n (Ek), 

.A;:yo = g;;t$ = 0, (st, Zk), = 0 

of supported bodies (Ikj; 11) consisting of kinematic pairs of the fifth 

(2.12) 

3. From Eqs.(2.7), using Eqs.(2.10) and (2.11), we can find the matrix equations of the 
support motion when no account is taken of the influence of its motion on the motion of the 
supported bodies. 

These equations are the first six scalar equations of (2.71, written in matrix form on 
the assumption that IIjlrIIsn E is a (6 X 6) identity matrix, Ull = 0, j$" = 0, after 
cancelling by the left-handed factor, cormnon to all terms, J~,rlo*T (det M,,‘O# 0), 

A (9% Y) q” + B (9. Y> q’, Y’) 9’ -t- Its Y) Y” + J (cl, yt 9.7 v’f Y’ = L+‘“F (3.1) 

A(q,y) =A I’M lo 11 

L,” = 1 E’ 1 L,,” I L,,” I . . . II 

q 3 qll, y E q,‘” = I/q’*, q=‘, . . . [IT 

Using the second of Eqs. (1.3), we can write the matrix B(q,~,q’,~‘)t in (3.1) as 
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For supported systems with kinematic pairs of the fifth class, the matrix coefficients 
are more simply written as 

Notice that (3.1) is an, in principle, new equation of motion of the support, which is 
simpler than Lagrange's equation of the second kind (the matrix A(q,y) is not the kinetic 

energy matrix of the "congealed" system, which has the form A (q, y) = Ml,l~~TA+llI1f,,lU; and the 
vector L+“T is not the vector of generalized forces, referred to the coordinates q, which 
has the form M,l~O.~L+‘lT). 

When obtaining Eqs.(3 .l), we have renumbered the indices of the bodies of the system. 

We can renumber, using the same indices, the coordinate systems which participate in just one 

elementary motion (translation or rotation), by introducing for the appropriate indices 
fictitious inertialess bodies. In this case, the coefficients Ib'? and JB'~ for the 
supported systems with kinematic pairs of any class, will again be given by the simple 

relations (3.3). It is not obvious that the choice of these coordinate systems is desirable. 

On the one hand, the algorithms of (3.1) take the simpler form (3.3), so that the programming 
problemis simplified; but on the other hand, there are more matrix factors in the matrices 

LpP-' E L (11.6) , and hence in the matrices A+'k and K+'ti. The question needs to be specially 

studied in each special case (depending on the graph structure, and the number of kinematic 

pairs of any class). 

4. With the aid of Eqs.(3.1) we can solve direct and inverse problems of the support 

dynamics. 

lo. Given the relative motion of the supported system ,' = 1' (i), 1" = y' (t), y" = 7" (t). The 

support motion q(t) is found by integrating the equation 

A(q, v(t)) q" + B (9, Y(I)> cl', y'(t)) q' = L+r'T - I(cl, Y(~))v" (t) - (3.4) 

J (cl, Y (t), q’, I” (t)) Y’ (t) 

20. Suppose we are given the support motion q (QY q' (t) and q” (t). The class of relative 

motions of the system, such that this support motion is obtained (if it exists), is found by 

means of the equation 

I (q (t), y) y” + J (q (t), p, q’ (L), v’) Y’ = L+” T - A (q (% Y) q” (I) - 
B (q (t), -2, q’ (t), Y’) q’ (t) 

If E = dim p > 6, we can divide the components of the vector y into six dependent V+ E 
R e, and E - 6 independent jy_~R:_~, components, i.e., y = 11 ~+,Y_II~, and thus state the 

optimal control problem (similar to (13) in /2/). We can formulate the problem of finding 

the mass-inertial characteristics of the supported systems or their structures, required to 
solve the control problem. 

5. The following facts ensure efficient composite models of the mechanics of the support 

of a system of rigid bodies with a tree structure, and efficient algorithms for the computer 

construction of them. 
lo. No labour and time are needed to construct symbolic expressions for the kinetic and 

potential energies, or the Gauss and Appell etc. functions. 

20. No use is made in the coefficients of the models of differentiation operators (Jacobi 

matrices, Hessians, three-index Boltzmann symbols, Christoffel symbols of the first and second 

kind, etc.), so that they can be symbolically constructed without using differentiating modules 

of systems of analytic calculations. 
3O. The algorithms are universal: they allow symbolic and numerical forms of the models 

of support mechanics to be constructed independently. 
4O. The use of our algorithms reduces the construction of Eqs.(2.7) and (3.1) to the 

independent (sequential or parellel) formation of the elements of their matrix coefficients. 

This means that, in the symbolic constructions, we can perform these operations sequentially, 

using the same small block of the computer working memory, if the intermediate results are 

printed out (or are recorded in an external memory), or, in the numerical constructions, we 

can reduce the working time by making the computations in parallel form. 
5O. The symbolic or numerical components of the vectors of the quasivelocities 

used in the algorithms for fomring the matrices Q'p'lp and @F'", 

V*OP, v;+, 

are obtained by means of a 
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single economic recurrence algorithm (1.3) or relations (2.4). 
6O. The operations of multiplying a (6 x 6) matrix by a (6 x 1) column or (1 x 6) row 

in the terms of Eqs.cZ.7) and (3.1) breaks down into an operation of multiplying a 
matrix by a (3 x 1)or (1 x 3) 

(3 x 3) 
vector if these matrices belong to one of four types, not count- 

ing the diagonal type (three elementary rotation matrices and a skew-symmetric matrix). This 
means that the strong matrix formalization of the models, which is convenient for using 
algebraic modules of systems of analytic calculations, can be combined with an economic form 
(in the computational sense) of the above operations. For this, we only need to introduce 
four computational algorithms which realize these operations as binary operations in R, 

c1 (Cl) z = 11 zl, 1% eos Q - z3 sin 8, xz sin e + 5% cos 8 IP 
c2 (6)s = /I z1 cos B + sQ sin 8, x2, zs cos 6 - 5i sin 8 /IT 
c, (8) r = 11 x1 cos 0 - x2 sin 8, z1 sin e + x2 co5 e,x,IIT 

<Y> x = II X3Yz - XzY3. %Y, - %YlV GYl - XlY, IIT 

so that we avoid the need for access to two-dimensional blocks and for performing operations 
with zeros. 

7o. The algorithms are easy to use and are therefore suitable for a wide range of 
specialists, 

6. Example. For the space apparatus (ll), carrying an antenna (12) on a ball joint 
and a three-section manipulator (22), (23), (24), if we ignore rotating flywheels, we have, by 
(l-4), 

The matrix coefficients in (3.1) are 

etc.; &ZP = K,421.Z’, 

The matrices 
vectors (1.4): 
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THE MECHANISM OF THE HARD APPEARANCE OF A TWO-FREQUENCY OSCILLATION MODE 
IN THE CASE OF ANDRONOV-HOPF REVERSE BIFURCATION* 

V.S. AFRAIMOVICH and L.P. VOZOVOI 

The mapping of Poincarh secants is used to prove that a two-frequency 

oscillation mode (2-torus) can arise as a result of the hard loss of 
stability of the equilibrium state. A necessary condition for the 
transition is the presence close to the equilibrium state of a saddle 

periodic motion, the unstable manifold of which is attracted to the 
stationary manifold. At the instant when the cycle vanishes (Andronov- 
Hopf reverse bifurcation) a close-to-homoclinic situation arise, when the 

unstable separatrix of the stationary state returns to a small neighbour- 

hood of it along a stable direction. 

Sufficient conditions are found for the Poincarg mapping to have an 

invariant curve corresponding to the appearance of a 2-torus in the 
initial system of differential equations. The possible connection of 
this scenario of stationary state with torus transition with the observed 

/l, 2/ mixed convection in a vertical layer with wavy boundaries in the 

case of numerical simulation is discussed. 

1. Formulation of the problem. We consider the system of differential equations 

u' = F(u, IL), u E R", p E I-PO, flol (1.1) 

where F is a Cm-smooth or analytic function of u, II. We assume that F (0, 0) = 0 and that, 

when the sign of p changes, an Andronov-Hopf reverse bifurcation occurs in the system. Let 

the equilibrium state 0 at p = 0 be a node with respect to the hyperbolic variable and an 

unstable non-hyperbolic focus in the central manifold. 
In the simplest case n = 3, when there is just one hyperbolic variable z, a smooth 

replacement of the coordinates and time can be used in some domain of variables p and u, 

where Ip 1 and IY 1 are sufficiently small, to reduce system (1.1) to the form 

p' = pp + ps + a&+, 'p' = 0 (1.2) 

i = --)u: + h' (P. cp, 5, p) 

where p and 'p are polar coordinates in the central manifold; the function N includes higher- 

order terms, and N = 0 for x = 0. 

For p>O the system has an equilibrium state (CP) of saddle type. If p<O thereisa 

stableICP andasaddle periodicmotion L, branching from it at the point p = 0. Let Wd (IQ 

*Prikl.Matem.!fekhan.,53,1,32-37,1989 


